Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network (2024)

Almeida, L.B.: Multilayer perceptrons, in: Handbook of Neural Computation, CRC Press, ISBN9780429142772, 1997. a

Al-Shaikhi, A., Nuha, H., Mohandes, M., Rehman, S., and Adrian, M.: Vertical wind speed extrapolation model using long short-term memory and particle swarm optimization, Energ. Sci. Eng., 10, 4580–4594, https://doi.org/10.1002/ese3.1291, 2022. a, b

Bali, V., Kumar, A., and Gangwar, S.: Deep Learning based Wind Speed Forecasting-A Review, in: IEEE2019 9thInternational Conference on Cloud Computing, Data Science& Engineering, 10–11January2019, Noida, India, https://doi.org/10.1109/confluence.2019.8776923, 2019. a, b, c

Baquero, L., Torio, H., and Leask, P.: Machine Learning Algorithms for Vertical Wind Speed Data Extrapolation: Comparison and Performance Using Mesoscale and Measured Site Data, Energies, 15, 5518, https://doi.org/10.3390/en15155518, 2022. a, b, c

Beu, C. M. L.: cassiabeu/doi.org-10.5194-wes-2023-104: v1.1, Zenodo [code], https://doi.org/10.5281/zenodo.12168778, 2024. a

Beu, C. M.L. and Landulfo, E.: Turbulence Kinetic Energy Dissipation Rate Estimate for a Low-Level Jet with Doppler Lidar Data: A Case Study, Earth Interact., 26, 112–121, https://doi.org/10.1175/ei-d-20-0027.1, 2022. a, b, c

Bodini, N. and Optis, M.: The importance of round-robin validation when assessing machine-learning-based vertical extrapolation of wind speeds, Wind Energ. Sci., 5, 489–501, https://doi.org/10.5194/wes-5-489-2020, 2020a. a, b, c, d, e, f, g

Bodini, N. and Optis, M.: How accurate is a machine learning-based wind speed extrapolation under a round-robin approach?, J. Phys.: Conf. Ser., 1618, 062037, https://doi.org/10.1088/1742-6596/1618/6/062037, 2020b. a, b, c, d, e, f, g

Breiman, L.: Random Forests, Mach. Learn., 45, 5–32 https://doi.org/10.1023/a:1010933404324, 2001. a

Cheng, C.-H. and Tsai, M.-C.: An Intelligent Time Series Model Based on Hybrid Methodology for Forecasting Concentrations of Significant Air Pollutants, Atmosphere, 13, 1055, https://doi.org/10.3390/atmos13071055, 2022. a

Dalton, A. and Bekker, B.: Exogenous atmospheric variables as wind speed predictors in machine learning, Appl. Energy, 319, 119257, https://doi.org/10.1016/j.apenergy.2022.119257, 2022. a

deOliveira, A.P., Degrazia, G.A., Moraes, O. L.L., and Tirabassi, T.: Numerical Study of the Nocturnal Planetary Boundary Layer at Low Latitutes, Trans. Ecol. Environ., 6, 167–174, 1995. a, b

Efron, B. and Tibshirani, R.: An Introduction to the Bootstrap, Chapman and Hall/CRC, https://doi.org/10.1201/9780429246593, 1994. a

He, J., Yang, H., Zhou, S., Chen, J., and Chen, M.: A Dual-Attention-Mechanism Multi-Channel Convolutional LSTM for Short-Term Wind Speed Prediction, Atmosphere, 14, 71, https://doi.org/10.3390/atmos14010071, 2022. a

Jesemann, A.-S., Matthias, V., Böhner, J., and Bechtel, B.: Using Neural Network NO2-Predictions to Understand Air Quality Changes in Urban Areas – A Case Study in Hamburg, Atmosphere, 13, 1929, https://doi.org/10.3390/atmos13111929, 2022. a

Jiang, H., Wang, X., and Sun, C.: Predicting PM2.5 in the Northeast China Heavy Industrial Zone: A Semi-Supervised Learning with Spatiotemporal Features, Atmosphere, 13, 1744, https://doi.org/10.3390/atmos13111744, 2022. a

Keras: Kerasguide, https://keras.io/api/layers/recurrent_layers/lstm/ (last access: 16July2023), 2023. a

Klockow, D. and Targa, H.J.: Performance and results of a six-year German/Brazilian research project in the industrial area of Cubatão/SPBrazil, Pure Appl. Chem., 70, 2287–2293, https://doi.org/10.1351/pac199870122287, 1998. a, b

Liu, B., Ma, X., Guo, J., Li, H., Jin, S., Ma, Y., and Gong, W.: Estimating hub-height wind speed based on a machine learning algorithm: implications for wind energy assessment, Atmos. Chem. Phys., 23, 3181–3193, https://doi.org/10.5194/acp-23-3181-2023, 2023. a

Liu, Y., Cai, J., and Tan, G.: Multi-Level Circulation Pattern Classification Based on the Transfer Learning CNN Network, Atmosphere, 13, 1861, https://doi.org/10.3390/atmos13111861, 2022. a

Medsker, L. and Jain, L.C.(Eds.): Recurrent Neural Networks, CRCPress, https://doi.org/10.1201/9781420049176, 1999. a

Mohandes, M.A. and Rehman, S.: Wind Speed Extrapolation Using Machine Learning Methods and LiDAR Measurements, IEEE Access, 6, 77634–77642, https://doi.org/10.1109/access.2018.2883677, 2018. a, b

Morellato, L. P.C. and Haddad, C. F.B.: Introduction: The Brazilian Atlantic Forest1, Biotropica, 32, 786–792, https://doi.org/10.1111/j.1744-7429.2000.tb00618.x, 2000. a

Mustakim, R., Mamat, M., and Yew, H.T.: Towards On-Site Implementation of Multi-Step Air Pollutant Index Prediction in Malaysia Industrial Area: Comparing the NARX Neural Network and Support Vector Regression, Atmosphere, 13, 1787, https://doi.org/10.3390/atmos13111787, 2022. a

Musyimi, P.K., Sahbeni, G., Timár, G., Weidinger, T., and Székely, B.: Actual Evapotranspiration Estimation Using Sentinel-1 SAR and Sentinel-3 SLSTR Data Combined with a Gradient Boosting Machine Model in Busia County, Western Kenya, Atmosphere, 13, 1927, https://doi.org/10.3390/atmos13111927, 2022. a

Nuha, H., Mohandes, M., Rehman, S., and A-Shaikhi, A.: Vertical wind speed extrapolation using regularized extreme learning machine, FME Trans., 50, 412–421, https://doi.org/10.5937/fme2203412n, 2022. a

O'Malley, T., Bursztein, E., Long, J., et al.: KerasTuner, GitHub [code], https://github.com/keras-team/keras-tuner (last access: 21July2023), 2019. a

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, Grisel, O., Blondel, M., Prettenhofer, Dubourg, V., Vanderplas, J., Passos, Brucher, M., Perrot, M., and duch*esnay, E.: Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a, b

Pintor, A., Pinto, C., Mendonca, J., Pilao, R., and Pinto, P.: Insights on the use of wind speed vertical extrapolation methods, in: 20thInternational Conference on Renewable Energies and Power Quality, RE& PQJ, Vigo, Spain, 27–29 July 2022, https://doi.org/10.24084/repqj20.410, 2022. a, b

Ribeiro, F.N., deOliveira, A.P., Soares, J., deMiranda, R.M., Barlage, M., and Chen, F.: Effect of sea breeze propagation on the urban boundary layer of the metropolitan region of Sao Paulo, Brazil, Atmos. Res., 214, 174–188, https://doi.org/10.1016/j.atmosres.2018.07.015, 2018. a, b

Sánchez, M.P., deOliveira, A.P., Varona, R.P., Tito, J.V., Codato, G., Ynoue, R.Y., Ribeiro, F. N.D., Filho, E. P.M., and daSilveira, L.C.: Observational Investigation of the Low-Level Jets in the Metropolitan Region of São Paulo, Brazil, Earth Space Sci., 9, e2021EA002190, https://doi.org/10.1029/2021ea002190, 2022. a, b

Schwegmann, S., Faulhaber, J., Pfaffel, S., Yu, Z., Dörenkämper, M., Kersting, K., and Gottschall, J.: Enabling Virtual Met Masts for wind energy applications through machine learning-methods, Energy AI, 11, 100209, https://doi.org/10.1016/j.egyai.2022.100209, 2023. a, b, c

Sherstinsky, A.: Fundamentals of Recurrent Neural Network(RNN) and Long Short-Term Memory(LSTM) network, PhysicaD, 404, 132306, https://doi.org/10.1016/j.physd.2019.132306, 2020. a

Smagulova, K. and James, A.P.: A survey on LSTM memristive neural network architectures and applications, Eur. Phys. J. Spec. Top., 228, 2313–2324, https://doi.org/10.1140/epjst/e2019-900046-x, 2019. a

Smola, A.J. and Schölkopf, B.: A tutorial on support vector regression, Stat. Comput., https://doi.org/10.1023/b:stco.0000035301.49549.88, 2004. a

Song, Y. and Wang, Y.: Global Wildfire Outlook Forecast with Neural Networks, Remote Sens., 12, 2246, https://doi.org/10.3390/rs12142246, 2020. a

Soria-Ruiz, J., Fernandez-Ordoñez, Y.M., Ambrosio-Ambrosio, J.P., Escalona-Maurice, M.J., Medina-García, G., Sotelo-Ruiz, E.D., and Ramirez-Guzman, M.E.: Flooded Extent and Depth Analysis Using Optical and SAR Remote Sensing with Machine Learning Algorithms, Atmosphere, 13, 1852, https://doi.org/10.3390/atmos13111852, 2022. a

Standen, J., Wilson, C., Vosper, S., and Clark, P.: Prediction of local wind climatology from Met Office models: Virtual Met Mast techniques, Wind Energy, 20, 411–430, https://doi.org/10.1002/we.2013, 2016. a, b

Stull, R.B.(Ed.): An Introduction to Boundary Layer Meteorology, Springer Netherlands, https://doi.org/10.1007/978-94-009-3027-8, 1988. a

Torres, M.E., Colominas, M.A., and Schlotthauer: A complete ensemble empirical mode decomposition with adaptive noise, in: 2011IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), 22–27May2011, Prague, Czech Republic, 4144–4147, https://doi.org/10.1109/ICASSP.2011.5947265, 2011. a, b

Tukur, A., Chidiebere, O., sh*ttu, F., and LawalAbdulrahman, M.: Neural Network Ensemble for Medium Term Forecast of Wind Power Generation: A Review Keyword: Artificial Neural Network, Ensemble technique, Recurrent Neural Network, Deep Learning and Deep Recurrent neural Network, Int. J. Adv. Res. Innov. Idea. Educ., 8, 1856–1865, 2022. a

Türkan, Y.S., Aydoğmuş, H.Y., and Erdal, H.: The prediction of the wind speed at different heights by machine learning methods, Int. J. Optimiz. Control, 6, 179–187, https://doi.org/10.11121/ijocta.01.2016.00315, 2016. a, b

Vassallo, D., Krishnamurthy, R., and Fernando, H. J. S.: Decreasing wind speed extrapolation error via domain-specific feature extraction and selection, Wind Energ. Sci., 5, 959–975, https://doi.org/10.5194/wes-5-959-2020, 2020. a, b, c

Vieira, B.C. and Gramani, M.F.: Serra do Mar: The Most “Tormented” Relief in Brazil, in: World Geomorphological Landscapes, Springer Netherlands, 285–297, https://doi.org/10.1007/978-94-017-8023-0_26, 2015. a

Vieira-Filho, M.S., Lehmann, C., and Fornaro, A.: Influence of local sources and topography on air quality and rainwater composition in Cubatão and SãoPaulo, Brazil, Atmos. Environ., 101, 200–208, https://doi.org/10.1016/j.atmosenv.2014.11.025, 2015. a

Virtanen, P., Gommers, R., Oliphant, Reddy, T., Cournapeau, Peterson, P., Weckesser, vander Walt, Wilson, J., Millman, Nelson, A. R.J., Jones, Larson, E., Carey, Feng, Y., Moore, Laxalde, D., Perktold, Henriksen, I., Quintero, Archibald, Pedregosa, and SciPy1.0 Contributors: SciPy1.0: Fundamental Algorithms for Scientific Computing in Python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a

Wang, J., Li, Q., and Zeng, B.: Multi-layer cooperative combined forecasting system for short-term wind speed forecasting, Sustain. Energ. Technol. Assess., 43, 100946, https://doi.org/10.1016/j.seta.2020.100946, 2021. a, b

Yu, Y., Si, X., Hu, C., and Zhang, J.: A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures, Neural Comput., 31, 1235–1270, https://doi.org/10.1162/neco_a_01199, 2019. a, b

Zhang, Y., Wang, Y., Zhu, Y., Yang, L., Ge, L., and Luo, C.: Visibility Prediction Based on Machine Learning Algorithms, Atmosphere, 13, 1125, https://doi.org/10.3390/atmos13071125, 2022. a

Zhou, F., Huang, Z., and Zhang, C.: Carbon price forecasting based on CEEMDAN and LSTM, Appl. Energy, 311, 118601, https://doi.org/10.1016/j.apenergy.2022.118601, 2022.  a, b

Zhou, J., Feng, J., Zhou, X., Li, Y., and Zhu, F.: Estimating Site-Specific Wind Speeds Using Gridded Data: A Comparison of Multiple Machine Learning Models, Atmosphere, 14, 142, https://doi.org/10.3390/atmos14010142, 2023. a

Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network (2024)

References

Top Articles
Latest Posts
Article information

Author: Cheryll Lueilwitz

Last Updated:

Views: 5725

Rating: 4.3 / 5 (74 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Cheryll Lueilwitz

Birthday: 1997-12-23

Address: 4653 O'Kon Hill, Lake Juanstad, AR 65469

Phone: +494124489301

Job: Marketing Representative

Hobby: Reading, Ice skating, Foraging, BASE jumping, Hiking, Skateboarding, Kayaking

Introduction: My name is Cheryll Lueilwitz, I am a sparkling, clean, super, lucky, joyous, outstanding, lucky person who loves writing and wants to share my knowledge and understanding with you.